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Abstract

We propose a distributed scheme for practical network coding that obviates
the need for centralized knowledge of the graph topology, the encoding functions,
and the decoding functions, and furthermore obviates the need for information to
be communicated synchronously through the network. The result is a practical
system for network coding that is robust to random packet loss and delay as well
as robust to any changes in the network topology or capacity due to joins, leaves,
node or link failures, congestion, and so on. We simulate such a practical network
coding system using the network topologies of several commercial Internet Service
Providers, and demonstrate that it can achieve close to the theoretically optimal
performance.

1 Introduction

In their pioneering theoretical work on network coding, in which the network is modeled
by a directed graph (V, E) with edge capacities, Alswede et al. [1] showed that a sender
s € V can communicate common information to a set of receivers T' C V at a rate
achieving the broadcast capacity h (the value of the minimum cut between s and any
t € T) provided one allows network coding, i.e., encoding at the interior nodes of the
network. Conversely, it is generally not possible to achieve this communication rate if
one allows only routing or copying messages at the interior nodes of the network. Shortly
afterwards, Li, Yeung, and Cai [2] showed that it is sufficient for the encoding functions at
the interior nodes to be linear. Koetter and Médard [3] showed how to find the coefficients
of the linear encoding and decoding functions by finding values for the indeterminates of
a polynomial for which the polynomial is non-zero. They also showed that such values
can always be found in a field of size h|T'|, where |T'| is the number of receivers. Jaggi,
Sanders, et al. [4, 5, 6] showed for acyclic networks how to find the encoding and decoding
coefficients in polynomial time, and showed (as did [7]) that field size |T'| suffices. They
also showed that the linear encoding functions can be designed randomly, and that if
the field size is at least |E|/J, the encoding will be invertible at any given receiver with
probability at least 1 — ¢, while if the field size is at least |E||T|/§, then the encoding
will be invertible simultaneously at all receivers with probability at least 1 — §. Other
researchers, e.g., Ho et al. [8], provided a very similar result for random coding.
Network coding is presumably highly applicable to communication through real net-
worksptheprimarysexample being the Internet, both at the IP layer (e.g., in routers) and
at the application layer (e.g., in peer-to-peer networks, content distribution networks, and
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other overlay networks). Other examples include ATM networks, ad hoc wireless radio
networks, and so forth, all of which are packet networks. However, there are significant
gaps between the previous theoretical work on network coding and the practical network
coding needed for communication through real networks.

Previous theoretical work in network coding has often assumed that symbols flow syn-
chronously throughout the entire network, and (to facilitate this model) that edges have
integer or unit capacities. In real networks, however, information travels asynchronously
in packets, packets are subject to random delays and losses on every edge, and edges have
essentially unknown capacities, which vary as competing communication processes begin
and end. Previous theoretical work has also assumed at least some centralized knowledge
of the network topology for the purposes of computing the broadcast capacity h and/or
computing the coding functions. In real networks, however, it may be difficult either
to obtain centralized knowledge, or to arrange reliable broadcast of that knowledge to
the nodes across the very communication network that is being established. Previous
theoretical work has given some consideration to designing encoding functions for a class
of non-ergodic failure patterns not reducing the capacity below a certain amount [3, 6].
However, in these works the decoders still need to know the failure pattern in order to
compute and apply the proper linear decoding function. Unfortunately, communicating
the failure pattern to the decoders needs to be done reliably, which is again problematic.
In previous theoretical work, graphs with cycles have generally presented difficulties, with
results holding only in the limit of large delay, for example. However, in real networks,
cycles abound; indeed most edges are bi-directional. Finally, previous theoretical work
has generally ignored the problem of heterogeneous receivers, targeting the sending rate
to the capacity of the worst-case receiver. In real networks, the worst-case receiver may
not be known. Moreover, if an important link to a receiver fails, bringing its throughput
below the nominal broadcast capacity, the other receivers should not experience the same
worst-case throughput.

Our work on practical network coding addresses real packet networks, where informa-
tion is delivered in packets subject to random delays and losses, where edges have variable
capacities due to congestion or other cross traffic, where node and link failures as well
as additions and deletions are common (e.g., in peer-to-peer or ad hoc networks), where
cycles are everywhere, where the actual broadcast capacity is unknown, and where re-
ceivers have heterogeneous capacities. We require no centralized knowledge of the graph
topology or the encoding or decoding functions, and we use simple techniques that are
applicable in practice.

2 Packet Format

In this section, we propose a packet format that removes the need for any centralized
knowledge of the graph topology or the encoding or decoding functions. This is the
foundation of our practical network coding scheme.

We start our discussion in the standard framework: with an acyclic graph (V| F)
having unit capacity edges, a sender s € V', and a set of receivers T' C E. The broad-
cast capacity h is the minimum number of edges in any cut between the sender and
a receiver. Each edge e € F emanating from a node v = in(e) carries a symbol y(e)
that is a linear combination of the symbols y(e’) on the edges ¢’ entering v, namely,
Y(€) =20 ouien=n me(€)y(e'). The local encoding vector m(e) = [me(€')]er.out(er)=v rep-
resents the encoding function at node v along edge e. If v is the sender s, then to
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maintain uniformity of notation we introduce artificial edges €}, ..., ¢} entering s, carry-

ing the h source symbols y(e!) = z;, i = 1,..., h. Thus by induction y(e) on any edge

e € F is a linear combination y(e) = S, g;(e)x; of the source symbols, where the h-

dimensional vector of coefficients g(e) = [g1(e), ..., gn(€e)] can be determined recursively
!

by g(€) = Yo out(er)=o Me(€')g(€), where g(e;) on the artificial edge e; is initialized to
the ith unit vector. The vector g(e) is known as the global encoding vector along edge e.

Any receiver t receiving along its A (or more) incoming edges ey, ..., e, the symbols
y(e1) gier) -+ gnler) 3} 3}
: = : : C =G|
y(en) gi(en) -+ gn(en) Th Th
can recover the source symbols x1,...,x, as long as the matrix G; of global encoding

vectors g(e1),...,g(ey) has rank h. This will be true with high probability if the local
encoding vectors are generated randomly and the symbols lie in a finite field of sufficient
size. According to [6], if the field size is 2'°® and the number of edges in the network
is at most |E| = 2%, then the matrix G; at any given receiver will have full rank with
probability at least 1 —278 = 0.996. We show in Section 4 that a field size of 2% is usually
sufficient in practice, and 2'¢ is more than sufficient, as any loss due to field size becomes
negligible compared to other losses typical at any given receiver.

In a packet network, the symbols y(e) carried along an edge e can be grouped into
packets. In the Internet, a typical maximum packet size excluding headers is somewhat
larger than 1400 bytes. Thus each TP packet can carry about N = 1400 symbols if the
field size is 2% or about N = 700 symbols if the field size is 2'6. Thus we packetize the
symbols y(e) flowing on each edge e into vectors y(e) = [yi(e), y2(€), ..., yn(e)] of the
appropriate length (depending on the field size), and now each of these vectors can be
expressed as a linear combination y(e) = >, ,,y(¢)=, Me(€')y (€') of the vectors y(e') on
the edges €' entering v = in(e). Likewise, we packetize the source symbols x; flowing
into the sender on the artificial edges € into vectors x; = [z;1, T2, ..., T;n], so that any
receiver can recover (with high probability) the h source vectors xi,...,x, from any h
received packets,

y(e1) yi(er) w2(e1) -+ yn(er) X1 Ti1 Ti2 ottt TN

y(en) yi(en) wy2(en) -+ yn(en) Xp Thi Th2  ThN

We now come to the foundational idea of the paper: we include within each packet
flowing on edge e the h-dimensional global encoding vector g(e). In this way, the global
encoding vectors needed to invert the code at any receiver can be found in the arriving
packets themselves. This scheme can be simply accomplished by prepending the ith unit
vector to the ith source vector x;, 2 = 1,..., h, and processing the vectors at each node
as usual. Any receiver can then recover the source vectors xi,...,x, using Gaussian
elimination on the vectors in its h (or more) received packets,

gi(er) - gn(er) wyiler) wy2(en) -+ ywn(er) 1 0 210 T12 -+ TN

gilen) -+ gnlen) wi(en) ya2(en) -+ ywn(en) 0 1 zp1 Th2 - TN

The cost of this scheme is the overhead of transmitting h extra symbols in each
packet. But this is reasonable: if h is 50, and the field size is 2%, then the overhead
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Figure 1: Source vector partitioning and redundancy for Priority Encoding Transmission.

is approximately 50/1400 ~ 3%. On the other hand, the benefits of the scheme are
profound. It buys the ability to be completely decentralized: receivers can decode without
knowing the network topology or the encoding functions; receivers can decode even if
nodes or edges are added or removed in an ad hoc fashion; receivers can decode with
packet losses or node or link failures without being told the locations of the losses or
failures; and receivers can decode even if the local encoding vectors are time-varying and
randomly chosen. We make extensive use of the latter property in next section.

Because removals, failures, or losses may reduce the minimum cut to any given receiver
below h, or there may be accidental rank reduction due to a poor random choice of local
encoding vectors, for further robustness erasure protection may also be necessary. Even in
ideal conditions, the sender may not accurately know the broadcast capacity. Moreover,
there may be situations in which the sender wishes to communicate more information
to receivers with a larger receiver capacity (the maximum flow or minimum cut between
the sender and receiver). Erasure coding can help in all of these situations.

The basic form of erasure protection in network coding is to send redundant packets.
For example, if the last h — k of the h source vectors x1,...,X; are known a priori to be
zero, then a receiver can still decode the first k£ source vectors if the rank of the received
global encoding vectors is at least k.

A more sophisticated form of erasure protection is based on the Priority Encoding
Transmission (PET) technique of Albanese et al. [9]. PET is an unequal erasure protec-
tion scheme in which the h source vectors are each identically partitioned into h layers of
increasing importance, and layers with higher importance get a higher degree of protec-
tion, or redundancy, as illustrated in Figure 1. If a receiver receives only a single global
encoding vector, then it can recover the symbols in the most important layer. In general,
if a receiver receives global encoding vectors with rank k, then it can recover the symbols
in the most important £ layers. This is especially useful when broadcasting audio or
video data, which can be naturally partitioned into layers with different perceptual im-
portance. There are a number of algorithms for optimizing such layers (e.g., [10, 11, 12]
and others, which minimize the expected distortion given the distortion-rate function
D(R) of the source and the probability p(k) of receiving rank k). It is not necessary
for a receiver to know in advance the boundaries N, between layers £ — 1 and k in the
source vectors. These boundaries can be communicated as part of the packet format [13].
Using this scheme, receivers with receiver capacities higher than the broadcast capacity
can receive correspondingly higher quality streams if the sending rate is sufficiently high.
Hence in our simulation results we measure throughput in terms of the rank received at
each receiver.
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3 Buffering Model

By itself, the scheme in the previous section is not sufficient for network coding in real
networks. In real networks, packets are not carried in synchrony over unit capacity edges.
Instead, packets are likely to be carried sequentially with other packets related to the
same set of source vectors, xi,...,Xy, over the same edge; packets on different edges
are generally subject to different propagation and queueing delays; and the number of
packets carried on an edge related to the same set of source vectors generally varies to due
to packet loss, congestion, or other changes in the available bandwidth due to competing
traffic. For all of these reasons, synchronization of the packets related to the same set
of source vectors becomes an important practical issue at both encoding and decoding
nodes. In this section, we propose a buffer model to address this issue.

In this paper, all packets related to the same set of h source vectors xXi,...,X; are
said to be in the same generation, and h is said to be the generation size. All packets in
the same generation are tagged with the same generation number. Sequential generations
receive sequentially increasing generation numbers. One or two bytes (mod 2° or 2!6)
in each packet header is sufficient to distinguish between successive generations in the
network.

In addition to generation numbers in the packet headers, a mechanism is needed at
each node to synchronize the packet arrivals and departures. Buffering can accomplish
this. In our buffer model, packets that arrive at a node on any of the incoming edges
are put into a single buffer sorted by generation number. Then, whenever there is a
transmission opportunity at an outgoing edge, a packet is generated containing a random
linear combination of all the packets that are already in the buffer within in the “current”
generation. Periodically, the current generation is advanced and the old generation is
flushed from the buffer according to one of a number of possible flushing policies discussed
shortly. Packets that arrive for a generation that has been flushed are discarded. Note
that the packets in the buffer for a given generation increase in number over time, and
the linear combinations are chosen randomly for each outgoing packet. Hence the local
encoding functions are time-varying. However, as noted in the previous section, this does
not present any decoding difficulties because the global encoding vectors are included in
the packets.

The first packet that arrives in the buffer for a generation represents new knowledge in
that it restricts each component of the source vectors x, ..., Xy to an (h—1)-dimensional
linear variety or coset. This is because every packet carried on an edge represents a linear
constraint of the form y = g - [xy, ..., z;] for each component. Subsequent packets may
or may not further reduce the dimensionality of each coset, and accordingly are termed
innovative or non-innovative. In other words, innovative packets contain vectors g that
lie outside the subspace spanned by vectors g already in the buffer, while non-innovative
packets contain vectors g that lie inside this subspace. Since non-innovative packets do
not change the subspace from which outgoing vectors are randomly generated, they are
useless and may be safely discarded from the buffer.

Since non-innovative information does not affect the transmission of innovative infor-
mation, every node can freely transmit on all its outgoing edges without having to know
whether the information it transmits will be innovative to its neighbors or not. This
allows the broadcast system to be completely distributed. No node or central authority
needs to know the global topology, the existence of cycles or flows, or even the general
upstream and downstream directions. Instead, every node may freely transmit on all its
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Figure 2: (a) Paths to a node with different delays. (b) Arrival times of packets trans-
mitted over these paths. Discarded packets are marked with an x.

outgoing edges and receive on all its incoming edges. This is ideal for ad hoc networks
or broadcast systems that need minimal management or control information.

Packets that are transmitted but turn out to be non-innovative nevertheless use up
bandwidth that could be used for other purposes. This bandwidth can be saved, within
a distributed setting, if each node monitors the innovation rates along its incoming edges
and arranges with its neighbors to restrict their transmission rates to their innovation
rates. In this way, non-contributing edges can essentially be removed from the graph.

An alternative approach to economizing network resources is first to run a distributed
maxflow algorithm (such as [14]) between the sender s and each receiver ¢t € T, and then
to restrict subsequent network coding to these flows. This is the approach we take for
the results in Section 4. We nevertheless perform Gaussian elimination at each node as
each packet arrives and is inserted into the buffer. This keeps the vectors in the buffer
in standard form, allowing immediate determination of whether a packet is innovative or
not. Non-innovative packets are discarded.

Decoding at a receiver is no different than the Gaussian elimination performed at any
node. In this sense, every node can be a receiver. Performing Gaussian elimination after
every received packet ensures the earliest possible decoding for every source vector. In
fact the matrix G of global encoding vectors received at a node tends to be approximately
lower triangular, and hence it is usually possible to decode the kth source vector after
receiving fewer more than k packets. We will show in Section 4 that in practice such
earliest decoding yields a much lower decoding delay than block decoding, and in fact in
many cases the decoding delay is almost independent of the block length .

One of the main issues in our buffering model is the policy of when to flush the current
generation and advance to the next generation. The simplest policy is to flush the current
generation when the first packet of the next generation arrives on any incoming edge.
This is a robust as well as simple policy, and most of the results reported in Section 4
use this policy. However, it sustains some loss in throughput compared to capacity. This
is due to the finiteness of each generation and the delay spread at a node. Delay spread
is the difference in time that it takes the first packet in a generation to reach a node
over the fastest and slowest paths. Figure 2 illustrates how delay spread might lead to
a reduction in achievable throughput. Each row of boxes represents the times of arrival
at a node v of packets traveling from the source s over different paths, with the top row
representing the path with the lowest delay and the other rows representing paths with
higher delay. The current (white) generation is flushed on arrival of the first packet in the
next (gray) generation; causing subsequent packets that arrive for the current generation
to be discarded. The resulting loss in throughput is approximately proportional to the

www.manaraa.com



fraction of discarded packets within a generation,

Throughput loss & delay spread (seconds)/generation duration (seconds)

= delay spread (seconds) x sending rate (packets per second)/hl,

where h is the generation size and I is the interleaving length. (Assume I = 1 for the
moment.) Hence networks with a low bandwidth-delay product are expected to have a
low loss in throughput. For networks with a high bandwidth-delay product, there are
several options. Increasing the generation size h can inversely decrease the throughput
loss, in terms of received rank, as we verify in the next section. However, it also increases
the packet header size linearly, which negatively impacts net throughput in bits per
second. Another solution, which is very effective, is increasing the interleaving length 1.
The interleaving length is the number of logical sessions into which the original multicast
session is partitioned and separately buffered. A generation with generation number n
is assigned to session 7 if i = n mod I. Thus the sending rate in each logical session and
hence its bandwidth-delay product, and hence its throughput loss, is essentially reduced
by a factor of I. Throughput loss can be reduced still further by more sophisticated
flushing policies. However, cycles that are essential to achieving the broadcast capacity
can cause an inherently large delay spread for some nodes. These phenomena are studied
in [15].

4 Simulation Results

We implemented the network coding scheme described in the previous sections using an
event-driven network simulator written in C++. We performed extensive experiments on
the graphs of six ISP backbones obtained from the Rocketfuel project at the University
of Washington [16, 17]. Because the Rocketfuel methodology does not directly infer edge
capacities, we arbitrarily set the capacity of each edge to 1Gbps/weight, where weight
is the cost inferred by Rocketfuel of transmitting over the edge relative to other edges.
We set the edge latencies according to the data from Rocketfuel, that is, equal to the
link propagation delay due to the speed of light.

Due to space limitations, here we report results only for the SprintLink ISP graph.
Results for the other ISP graphs are similar. We placed the sender at Seattle and arbi-
trarily selected 20 receivers, trying to select nodes with different receiver capacities. We
then reduced the original graph, which has 89 nodes and 972 bi-directional edges, to a
union of the maximum flows from the sender to each receiver, resulting in 89 nodes and
207 bi-directional edges. This subgraph is sufficient to preserve the broadcast capacity
while economizing network resources. In the following, we include performances for five
receivers: Chicago, Pearl Harbor, Anaheim, Boston, and San Jose, which have respective
receiver capacities 450, 525, 625, 733, and 833 Mbps. The broadcast capacity is 450
Mbps.

Here we study throughput and decoding delay as a function of time, sending rate, edge
latency, field size, generation size, and interleaving length. Unless otherwise specified,
the sending rate is 450 Mbps, the field size is 2'6, the generation size is 100, and the
interleaving length is 100. We send approximately 20000 packets in each experiment,
e.g., broken into two contiguous sets of 100 interleaved generations, each generation
containing 100 packets.

Figure 3(left) shows the received rank as a function of time (or generation number) for
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Figure 3: (Left) Received rank over time. (Right) Average received rank vs. field size.
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Figure 4: Throughput vs. sending rate, with (left) original edge latencies and (right) edge
latencies reduced by a factor of 100.

each of the five receivers, plotted in different line styles for each receiver. The maximum
rank is A = 100, which would correspond to a throughput equal to the sending rate of 830
Mbps. Receivers with lower receiver capacity receive correspondingly lower rank. It can
be seen that the variation over time for each receiver is on the order of several percent.
Figure 3(right) shows average received rank vs. field size for the different receivers, again
for a sending rate of 830 Mbps. It can be seen that the average received rank peaks for
field size = 2% or 2'¢ regardless of receiver capacity.

Figure 4(left) shows throughput as a function of sending rate. Throughput is mea-
sured as the sending rate times the average received rank divided by the generation size.
Observe that throughput for each receiver approximately grows with sending rate, but
then saturates below the receiver’s capacity. The gap between a receiver’'s maximum
throughput and its capacity is attributable to delay spread. Figure 4(right) shows the
same information, when edge latencies are reduced by a factor of 100. This is equivalent
to reducing the physical size of the network or else reducing both the edge capacities and
sending rate by a factor of 100. The maximum throughput is then closer to capacity
because the delay-bandwidth product of the network is reduced.

Figures 5(left) and 5(right) respectively show the average loss in throughput as a
function of generation size h and interleaving length I. It can be seen that the loss is
approximately inversely proportional to both h and I, validating our delay spread model.

Finallyy Figures 6(left)]and 6(right) respectively show the average packet delay as a
function of generation size i and interleaving length I, for the Anaheim receiver, which is
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Figure 6: Packet delay vs. (left) generation size and (right) interleaving length.

a typical receiver. This is the delay between the time a source vector x; is encoded by the
sender and decoded by the receiver. It can be seen that the average packet delay (as well
as the standard deviation, indicated by vertical lines) increases linearly with generation
size and/or interleaving length, for block decoding, while remaining almost constant for
earliest decoding.

5 Conclusion

We introduced a scheme for practical network coding in real networks, and simulated
the scheme on graphs of several Internet Service Providers. The scheme uses buffering
to synchronize arbitrary packet arrivals and departures at each node, random encoding
to deal with varying numbers of packets in the buffer, and a packet format that includes
global encoding vectors to provide the receivers with just the right information to de-
code the packets under such time-varying network conditions. The scheme can achieve
throughput close to capacity with low delay.
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