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omAbstra
tWe propose a distributed s
heme for pra
ti
al network 
oding that obviatesthe need for 
entralized knowledge of the graph topology, the en
oding fun
tions,and the de
oding fun
tions, and furthermore obviates the need for information tobe 
ommuni
ated syn
hronously through the network. The result is a pra
ti
alsystem for network 
oding that is robust to random pa
ket loss and delay as wellas robust to any 
hanges in the network topology or 
apa
ity due to joins, leaves,node or link failures, 
ongestion, and so on. We simulate su
h a pra
ti
al network
oding system using the network topologies of several 
ommer
ial Internet Servi
eProviders, and demonstrate that it 
an a
hieve 
lose to the theoreti
ally optimalperforman
e.1 Introdu
tionIn their pioneering theoreti
al work on network 
oding, in whi
h the network is modeledby a dire
ted graph (V;E) with edge 
apa
ities, Alswede et al. [1℄ showed that a senders 2 V 
an 
ommuni
ate 
ommon information to a set of re
eivers T � V at a ratea
hieving the broad
ast 
apa
ity h (the value of the minimum 
ut between s and anyt 2 T ) provided one allows network 
oding, i.e., en
oding at the interior nodes of thenetwork. Conversely, it is generally not possible to a
hieve this 
ommuni
ation rate ifone allows only routing or 
opying messages at the interior nodes of the network. Shortlyafterwards, Li, Yeung, and Cai [2℄ showed that it is suÆ
ient for the en
oding fun
tions atthe interior nodes to be linear. Koetter and M�edard [3℄ showed how to �nd the 
oeÆ
ientsof the linear en
oding and de
oding fun
tions by �nding values for the indeterminates ofa polynomial for whi
h the polynomial is non-zero. They also showed that su
h values
an always be found in a �eld of size hjT j, where jT j is the number of re
eivers. Jaggi,Sanders, et al. [4, 5, 6℄ showed for a
y
li
 networks how to �nd the en
oding and de
oding
oeÆ
ients in polynomial time, and showed (as did [7℄) that �eld size jT j suÆ
es. Theyalso showed that the linear en
oding fun
tions 
an be designed randomly, and that ifthe �eld size is at least jEj=Æ, the en
oding will be invertible at any given re
eiver withprobability at least 1 � Æ, while if the �eld size is at least jEjjT j=Æ, then the en
odingwill be invertible simultaneously at all re
eivers with probability at least 1 � Æ. Otherresear
hers, e.g., Ho et al. [8℄, provided a very similar result for random 
oding.Network 
oding is presumably highly appli
able to 
ommuni
ation through real net-works, the primary example being the Internet, both at the IP layer (e.g., in routers) andat the appli
ation layer (e.g., in peer-to-peer networks, 
ontent distribution networks, and
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other overlay networks). Other examples in
lude ATM networks, ad ho
 wireless radionetworks, and so forth, all of whi
h are pa
ket networks. However, there are signi�
antgaps between the previous theoreti
al work on network 
oding and the pra
ti
al network
oding needed for 
ommuni
ation through real networks.Previous theoreti
al work in network 
oding has often assumed that symbols 
ow syn-
hronously throughout the entire network, and (to fa
ilitate this model) that edges haveinteger or unit 
apa
ities. In real networks, however, information travels asyn
hronouslyin pa
kets, pa
kets are subje
t to random delays and losses on every edge, and edges haveessentially unknown 
apa
ities, whi
h vary as 
ompeting 
ommuni
ation pro
esses beginand end. Previous theoreti
al work has also assumed at least some 
entralized knowledgeof the network topology for the purposes of 
omputing the broad
ast 
apa
ity h and/or
omputing the 
oding fun
tions. In real networks, however, it may be diÆ
ult eitherto obtain 
entralized knowledge, or to arrange reliable broad
ast of that knowledge tothe nodes a
ross the very 
ommuni
ation network that is being established. Previoustheoreti
al work has given some 
onsideration to designing en
oding fun
tions for a 
lassof non-ergodi
 failure patterns not redu
ing the 
apa
ity below a 
ertain amount [3, 6℄.However, in these works the de
oders still need to know the failure pattern in order to
ompute and apply the proper linear de
oding fun
tion. Unfortunately, 
ommuni
atingthe failure pattern to the de
oders needs to be done reliably, whi
h is again problemati
.In previous theoreti
al work, graphs with 
y
les have generally presented diÆ
ulties, withresults holding only in the limit of large delay, for example. However, in real networks,
y
les abound; indeed most edges are bi-dire
tional. Finally, previous theoreti
al workhas generally ignored the problem of heterogeneous re
eivers, targeting the sending rateto the 
apa
ity of the worst-
ase re
eiver. In real networks, the worst-
ase re
eiver maynot be known. Moreover, if an important link to a re
eiver fails, bringing its throughputbelow the nominal broad
ast 
apa
ity, the other re
eivers should not experien
e the sameworst-
ase throughput.Our work on pra
ti
al network 
oding addresses real pa
ket networks, where informa-tion is delivered in pa
kets subje
t to random delays and losses, where edges have variable
apa
ities due to 
ongestion or other 
ross traÆ
, where node and link failures as wellas additions and deletions are 
ommon (e.g., in peer-to-peer or ad ho
 networks), where
y
les are everywhere, where the a
tual broad
ast 
apa
ity is unknown, and where re-
eivers have heterogeneous 
apa
ities. We require no 
entralized knowledge of the graphtopology or the en
oding or de
oding fun
tions, and we use simple te
hniques that areappli
able in pra
ti
e.2 Pa
ket FormatIn this se
tion, we propose a pa
ket format that removes the need for any 
entralizedknowledge of the graph topology or the en
oding or de
oding fun
tions. This is thefoundation of our pra
ti
al network 
oding s
heme.We start our dis
ussion in the standard framework: with an a
y
li
 graph (V;E)having unit 
apa
ity edges, a sender s 2 V , and a set of re
eivers T � E. The broad-
ast 
apa
ity h is the minimum number of edges in any 
ut between the sender anda re
eiver. Ea
h edge e 2 E emanating from a node v = in(e) 
arries a symbol y(e)that is a linear 
ombination of the symbols y(e0) on the edges e0 entering v, namely,y(e) = Pe0:out(e0)=v me(e0)y(e0). The lo
al en
oding ve
tor m(e) = [me(e0)℄e0:out(e0)=v rep-resents the en
oding fun
tion at node v along edge e. If v is the sender s, then to
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maintain uniformity of notation we introdu
e arti�
ial edges e01; : : : ; e0h entering s, 
arry-ing the h sour
e symbols y(e0i) = xi, i = 1; : : : ; h. Thus by indu
tion y(e) on any edgee 2 E is a linear 
ombination y(e) = Phi=1 gi(e)xi of the sour
e symbols, where the h-dimensional ve
tor of 
oeÆ
ients g(e) = [g1(e); : : : ; gh(e)℄ 
an be determined re
ursivelyby g(e) = Pe0:out(e0)=v me(e0)g(e0), where g(e0i) on the arti�
ial edge e0i is initialized tothe ith unit ve
tor. The ve
tor g(e) is known as the global en
oding ve
tor along edge e.Any re
eiver t re
eiving along its h (or more) in
oming edges e1; : : : ; eh the symbols264 y(e1)...y(eh) 375 = 264 g1(e1) � � � gh(e1)... . . . ...g1(eh) � � � gh(eh) 375264 x1...xh 375 = Gt 264 x1...xh 375
an re
over the sour
e symbols x1; : : : ; xh as long as the matrix Gt of global en
odingve
tors g(e1); : : : ; g(eh) has rank h. This will be true with high probability if the lo
alen
oding ve
tors are generated randomly and the symbols lie in a �nite �eld of suÆ
ientsize. A

ording to [6℄, if the �eld size is 216 and the number of edges in the networkis at most jEj = 28, then the matrix Gt at any given re
eiver will have full rank withprobability at least 1�2�8 = 0:996. We show in Se
tion 4 that a �eld size of 28 is usuallysuÆ
ient in pra
ti
e, and 216 is more than suÆ
ient, as any loss due to �eld size be
omesnegligible 
ompared to other losses typi
al at any given re
eiver.In a pa
ket network, the symbols y(e) 
arried along an edge e 
an be grouped intopa
kets. In the Internet, a typi
al maximum pa
ket size ex
luding headers is somewhatlarger than 1400 bytes. Thus ea
h IP pa
ket 
an 
arry about N = 1400 symbols if the�eld size is 28 or about N = 700 symbols if the �eld size is 216. Thus we pa
ketize thesymbols y(e) 
owing on ea
h edge e into ve
tors y(e) = [y1(e); y2(e); : : : ; yN(e)℄ of theappropriate length (depending on the �eld size), and now ea
h of these ve
tors 
an beexpressed as a linear 
ombination y(e) =Pe0:out(e0)=v me(e0)y(e0) of the ve
tors y(e0) onthe edges e0 entering v = in(e). Likewise, we pa
ketize the sour
e symbols xi 
owinginto the sender on the arti�
ial edges e0i into ve
tors xi = [xi;1; xi;2; : : : ; xi;N ℄, so that anyre
eiver 
an re
over (with high probability) the h sour
e ve
tors x1; : : : ;xh from any hre
eived pa
kets,264 y(e1)...y(eh) 375 = 264 y1(e1) y2(e1) � � � yN(e1)... ... . . . ...y1(eh) y2(eh) � � � yN(eh) 375 = Gt 264 x1...xh 375 = Gt 264 x1;1 x1;2 � � � x1;N... ... . . . ...xh;1 xh;2 � � � xh;N 375:We now 
ome to the foundational idea of the paper: we in
lude within ea
h pa
ket
owing on edge e the h-dimensional global en
oding ve
tor g(e). In this way, the globalen
oding ve
tors needed to invert the 
ode at any re
eiver 
an be found in the arrivingpa
kets themselves. This s
heme 
an be simply a

omplished by prepending the ith unitve
tor to the ith sour
e ve
tor xi, i = 1; : : : ; h, and pro
essing the ve
tors at ea
h nodeas usual. Any re
eiver 
an then re
over the sour
e ve
tors x1; : : : ;xh using Gaussianelimination on the ve
tors in its h (or more) re
eived pa
kets,264 g1(e1) � � � gh(e1) y1(e1) y2(e1) � � � yN(e1)... . . . ... ... ... . . . ...g1(eh) � � � gh(eh) y1(eh) y2(eh) � � � yN (eh) 375 = Gt 264 1 0 x1;1 x1;2 � � � x1;N. . . ... ... . . . ...0 1 xh;1 xh;2 � � � xh;N 375:The 
ost of this s
heme is the overhead of transmitting h extra symbols in ea
hpa
ket. But this is reasonable: if h is 50, and the �eld size is 28, then the overhead
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Figure 1: Sour
e ve
tor partitioning and redundan
y for Priority En
oding Transmission.is approximately 50=1400 � 3%. On the other hand, the bene�ts of the s
heme areprofound. It buys the ability to be 
ompletely de
entralized: re
eivers 
an de
ode withoutknowing the network topology or the en
oding fun
tions; re
eivers 
an de
ode even ifnodes or edges are added or removed in an ad ho
 fashion; re
eivers 
an de
ode withpa
ket losses or node or link failures without being told the lo
ations of the losses orfailures; and re
eivers 
an de
ode even if the lo
al en
oding ve
tors are time-varying andrandomly 
hosen. We make extensive use of the latter property in next se
tion.Be
ause removals, failures, or losses may redu
e the minimum 
ut to any given re
eiverbelow h, or there may be a

idental rank redu
tion due to a poor random 
hoi
e of lo
alen
oding ve
tors, for further robustness erasure prote
tion may also be ne
essary. Even inideal 
onditions, the sender may not a

urately know the broad
ast 
apa
ity. Moreover,there may be situations in whi
h the sender wishes to 
ommuni
ate more informationto re
eivers with a larger re
eiver 
apa
ity (the maximum 
ow or minimum 
ut betweenthe sender and re
eiver). Erasure 
oding 
an help in all of these situations.The basi
 form of erasure prote
tion in network 
oding is to send redundant pa
kets.For example, if the last h� k of the h sour
e ve
tors x1; : : : ;xh are known a priori to bezero, then a re
eiver 
an still de
ode the �rst k sour
e ve
tors if the rank of the re
eivedglobal en
oding ve
tors is at least k.A more sophisti
ated form of erasure prote
tion is based on the Priority En
odingTransmission (PET) te
hnique of Albanese et al. [9℄. PET is an unequal erasure prote
-tion s
heme in whi
h the h sour
e ve
tors are ea
h identi
ally partitioned into h layers ofin
reasing importan
e, and layers with higher importan
e get a higher degree of prote
-tion, or redundan
y, as illustrated in Figure 1. If a re
eiver re
eives only a single globalen
oding ve
tor, then it 
an re
over the symbols in the most important layer. In general,if a re
eiver re
eives global en
oding ve
tors with rank k, then it 
an re
over the symbolsin the most important k layers. This is espe
ially useful when broad
asting audio orvideo data, whi
h 
an be naturally partitioned into layers with di�erent per
eptual im-portan
e. There are a number of algorithms for optimizing su
h layers (e.g., [10, 11, 12℄and others, whi
h minimize the expe
ted distortion given the distortion-rate fun
tionD(R) of the sour
e and the probability p(k) of re
eiving rank k). It is not ne
essaryfor a re
eiver to know in advan
e the boundaries Nk between layers k � 1 and k in thesour
e ve
tors. These boundaries 
an be 
ommuni
ated as part of the pa
ket format [13℄.Using this s
heme, re
eivers with re
eiver 
apa
ities higher than the broad
ast 
apa
ity
an re
eive 
orrespondingly higher quality streams if the sending rate is suÆ
iently high.Hen
e in our simulation results we measure throughput in terms of the rank re
eived atea
h re
eiver.
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3 Bu�ering ModelBy itself, the s
heme in the previous se
tion is not suÆ
ient for network 
oding in realnetworks. In real networks, pa
kets are not 
arried in syn
hrony over unit 
apa
ity edges.Instead, pa
kets are likely to be 
arried sequentially with other pa
kets related to thesame set of sour
e ve
tors, x1; : : : ;xh, over the same edge; pa
kets on di�erent edgesare generally subje
t to di�erent propagation and queueing delays; and the number ofpa
kets 
arried on an edge related to the same set of sour
e ve
tors generally varies to dueto pa
ket loss, 
ongestion, or other 
hanges in the available bandwidth due to 
ompetingtraÆ
. For all of these reasons, syn
hronization of the pa
kets related to the same setof sour
e ve
tors be
omes an important pra
ti
al issue at both en
oding and de
odingnodes. In this se
tion, we propose a bu�er model to address this issue.In this paper, all pa
kets related to the same set of h sour
e ve
tors x1; : : : ;xh aresaid to be in the same generation, and h is said to be the generation size. All pa
kets inthe same generation are tagged with the same generation number. Sequential generationsre
eive sequentially in
reasing generation numbers. One or two bytes (mod 28 or 216)in ea
h pa
ket header is suÆ
ient to distinguish between su

essive generations in thenetwork.In addition to generation numbers in the pa
ket headers, a me
hanism is needed atea
h node to syn
hronize the pa
ket arrivals and departures. Bu�ering 
an a

omplishthis. In our bu�er model, pa
kets that arrive at a node on any of the in
oming edgesare put into a single bu�er sorted by generation number. Then, whenever there is atransmission opportunity at an outgoing edge, a pa
ket is generated 
ontaining a randomlinear 
ombination of all the pa
kets that are already in the bu�er within in the \
urrent"generation. Periodi
ally, the 
urrent generation is advan
ed and the old generation is
ushed from the bu�er a

ording to one of a number of possible 
ushing poli
ies dis
ussedshortly. Pa
kets that arrive for a generation that has been 
ushed are dis
arded. Notethat the pa
kets in the bu�er for a given generation in
rease in number over time, andthe linear 
ombinations are 
hosen randomly for ea
h outgoing pa
ket. Hen
e the lo
alen
oding fun
tions are time-varying. However, as noted in the previous se
tion, this doesnot present any de
oding diÆ
ulties be
ause the global en
oding ve
tors are in
luded inthe pa
kets.The �rst pa
ket that arrives in the bu�er for a generation represents new knowledge inthat it restri
ts ea
h 
omponent of the sour
e ve
tors x1; : : : ;xh to an (h�1)-dimensionallinear variety or 
oset. This is be
ause every pa
ket 
arried on an edge represents a linear
onstraint of the form y = g � [x1; : : : ; xh℄ for ea
h 
omponent. Subsequent pa
kets mayor may not further redu
e the dimensionality of ea
h 
oset, and a

ordingly are termedinnovative or non-innovative. In other words, innovative pa
kets 
ontain ve
tors g thatlie outside the subspa
e spanned by ve
tors g already in the bu�er, while non-innovativepa
kets 
ontain ve
tors g that lie inside this subspa
e. Sin
e non-innovative pa
kets donot 
hange the subspa
e from whi
h outgoing ve
tors are randomly generated, they areuseless and may be safely dis
arded from the bu�er.Sin
e non-innovative information does not a�e
t the transmission of innovative infor-mation, every node 
an freely transmit on all its outgoing edges without having to knowwhether the information it transmits will be innovative to its neighbors or not. Thisallows the broad
ast system to be 
ompletely distributed. No node or 
entral authorityneeds to know the global topology, the existen
e of 
y
les or 
ows, or even the generalupstream and downstream dire
tions. Instead, every node may freely transmit on all its
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Figure 2: (a) Paths to a node with di�erent delays. (b) Arrival times of pa
kets trans-mitted over these paths. Dis
arded pa
kets are marked with an �.outgoing edges and re
eive on all its in
oming edges. This is ideal for ad ho
 networksor broad
ast systems that need minimal management or 
ontrol information.Pa
kets that are transmitted but turn out to be non-innovative nevertheless use upbandwidth that 
ould be used for other purposes. This bandwidth 
an be saved, withina distributed setting, if ea
h node monitors the innovation rates along its in
oming edgesand arranges with its neighbors to restri
t their transmission rates to their innovationrates. In this way, non-
ontributing edges 
an essentially be removed from the graph.An alternative approa
h to e
onomizing network resour
es is �rst to run a distributedmax
ow algorithm (su
h as [14℄) between the sender s and ea
h re
eiver t 2 T , and thento restri
t subsequent network 
oding to these 
ows. This is the approa
h we take forthe results in Se
tion 4. We nevertheless perform Gaussian elimination at ea
h node asea
h pa
ket arrives and is inserted into the bu�er. This keeps the ve
tors in the bu�erin standard form, allowing immediate determination of whether a pa
ket is innovative ornot. Non-innovative pa
kets are dis
arded.De
oding at a re
eiver is no di�erent than the Gaussian elimination performed at anynode. In this sense, every node 
an be a re
eiver. Performing Gaussian elimination afterevery re
eived pa
ket ensures the earliest possible de
oding for every sour
e ve
tor. Infa
t the matrixGt of global en
oding ve
tors re
eived at a node tends to be approximatelylower triangular, and hen
e it is usually possible to de
ode the kth sour
e ve
tor afterre
eiving fewer more than k pa
kets. We will show in Se
tion 4 that in pra
ti
e su
hearliest de
oding yields a mu
h lower de
oding delay than blo
k de
oding, and in fa
t inmany 
ases the de
oding delay is almost independent of the blo
k length h.One of the main issues in our bu�ering model is the poli
y of when to 
ush the 
urrentgeneration and advan
e to the next generation. The simplest poli
y is to 
ush the 
urrentgeneration when the �rst pa
ket of the next generation arrives on any in
oming edge.This is a robust as well as simple poli
y, and most of the results reported in Se
tion 4use this poli
y. However, it sustains some loss in throughput 
ompared to 
apa
ity. Thisis due to the �niteness of ea
h generation and the delay spread at a node. Delay spreadis the di�eren
e in time that it takes the �rst pa
ket in a generation to rea
h a nodeover the fastest and slowest paths. Figure 2 illustrates how delay spread might lead toa redu
tion in a
hievable throughput. Ea
h row of boxes represents the times of arrivalat a node v of pa
kets traveling from the sour
e s over di�erent paths, with the top rowrepresenting the path with the lowest delay and the other rows representing paths withhigher delay. The 
urrent (white) generation is 
ushed on arrival of the �rst pa
ket in thenext (gray) generation, 
ausing subsequent pa
kets that arrive for the 
urrent generationto be dis
arded. The resulting loss in throughput is approximately proportional to the
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fra
tion of dis
arded pa
kets within a generation,Throughput loss _/ delay spread (se
onds)=generation duration (se
onds)= delay spread (se
onds) � sending rate (pa
kets per se
ond)=hI;where h is the generation size and I is the interleaving length. (Assume I = 1 for themoment.) Hen
e networks with a low bandwidth-delay produ
t are expe
ted to have alow loss in throughput. For networks with a high bandwidth-delay produ
t, there areseveral options. In
reasing the generation size h 
an inversely de
rease the throughputloss, in terms of re
eived rank, as we verify in the next se
tion. However, it also in
reasesthe pa
ket header size linearly, whi
h negatively impa
ts net throughput in bits perse
ond. Another solution, whi
h is very e�e
tive, is in
reasing the interleaving length I.The interleaving length is the number of logi
al sessions into whi
h the original multi
astsession is partitioned and separately bu�ered. A generation with generation number nis assigned to session i if i = n mod I. Thus the sending rate in ea
h logi
al session andhen
e its bandwidth-delay produ
t, and hen
e its throughput loss, is essentially redu
edby a fa
tor of I. Throughput loss 
an be redu
ed still further by more sophisti
ated
ushing poli
ies. However, 
y
les that are essential to a
hieving the broad
ast 
apa
ity
an 
ause an inherently large delay spread for some nodes. These phenomena are studiedin [15℄.4 Simulation ResultsWe implemented the network 
oding s
heme des
ribed in the previous se
tions using anevent-driven network simulator written in C++. We performed extensive experiments onthe graphs of six ISP ba
kbones obtained from the Ro
ketfuel proje
t at the Universityof Washington [16, 17℄. Be
ause the Ro
ketfuel methodology does not dire
tly infer edge
apa
ities, we arbitrarily set the 
apa
ity of ea
h edge to 1Gbps=weight, where weightis the 
ost inferred by Ro
ketfuel of transmitting over the edge relative to other edges.We set the edge laten
ies a

ording to the data from Ro
ketfuel, that is, equal to thelink propagation delay due to the speed of light.Due to spa
e limitations, here we report results only for the SprintLink ISP graph.Results for the other ISP graphs are similar. We pla
ed the sender at Seattle and arbi-trarily sele
ted 20 re
eivers, trying to sele
t nodes with di�erent re
eiver 
apa
ities. Wethen redu
ed the original graph, whi
h has 89 nodes and 972 bi-dire
tional edges, to aunion of the maximum 
ows from the sender to ea
h re
eiver, resulting in 89 nodes and207 bi-dire
tional edges. This subgraph is suÆ
ient to preserve the broad
ast 
apa
itywhile e
onomizing network resour
es. In the following, we in
lude performan
es for �vere
eivers: Chi
ago, Pearl Harbor, Anaheim, Boston, and San Jose, whi
h have respe
tivere
eiver 
apa
ities 450, 525, 625, 733, and 833 Mbps. The broad
ast 
apa
ity is 450Mbps.Here we study throughput and de
oding delay as a fun
tion of time, sending rate, edgelaten
y, �eld size, generation size, and interleaving length. Unless otherwise spe
i�ed,the sending rate is 450 Mbps, the �eld size is 216, the generation size is 100, and theinterleaving length is 100. We send approximately 20000 pa
kets in ea
h experiment,e.g., broken into two 
ontiguous sets of 100 interleaved generations, ea
h generation
ontaining 100 pa
kets.Figure 3(left) shows the re
eived rank as a fun
tion of time (or generation number) for
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Figure 3: (Left) Re
eived rank over time. (Right) Average re
eived rank vs. �eld size.SendingRate=830 Mbps.
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Figure 4: Throughput vs. sending rate, with (left) original edge laten
ies and (right) edgelaten
ies redu
ed by a fa
tor of 100.ea
h of the �ve re
eivers, plotted in di�erent line styles for ea
h re
eiver. The maximumrank is h = 100, whi
h would 
orrespond to a throughput equal to the sending rate of 830Mbps. Re
eivers with lower re
eiver 
apa
ity re
eive 
orrespondingly lower rank. It 
anbe seen that the variation over time for ea
h re
eiver is on the order of several per
ent.Figure 3(right) shows average re
eived rank vs. �eld size for the di�erent re
eivers, againfor a sending rate of 830 Mbps. It 
an be seen that the average re
eived rank peaks for�eld size = 28 or 216 regardless of re
eiver 
apa
ity.Figure 4(left) shows throughput as a fun
tion of sending rate. Throughput is mea-sured as the sending rate times the average re
eived rank divided by the generation size.Observe that throughput for ea
h re
eiver approximately grows with sending rate, butthen saturates below the re
eiver's 
apa
ity. The gap between a re
eiver's maximumthroughput and its 
apa
ity is attributable to delay spread. Figure 4(right) shows thesame information, when edge laten
ies are redu
ed by a fa
tor of 100. This is equivalentto redu
ing the physi
al size of the network or else redu
ing both the edge 
apa
ities andsending rate by a fa
tor of 100. The maximum throughput is then 
loser to 
apa
itybe
ause the delay-bandwidth produ
t of the network is redu
ed.Figures 5(left) and 5(right) respe
tively show the average loss in throughput as afun
tion of generation size h and interleaving length I. It 
an be seen that the loss isapproximately inversely proportional to both h and I, validating our delay spread model.Finally, Figures 6(left) and 6(right) respe
tively show the average pa
ket delay as afun
tion of generation size h and interleaving length I, for the Anaheim re
eiver, whi
h is
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Figure 5: Throughput loss vs. (left) generation size and (right) interleaving length.
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Figure 6: Pa
ket delay vs. (left) generation size and (right) interleaving length.a typi
al re
eiver. This is the delay between the time a sour
e ve
tor xi is en
oded by thesender and de
oded by the re
eiver. It 
an be seen that the average pa
ket delay (as wellas the standard deviation, indi
ated by verti
al lines) in
reases linearly with generationsize and/or interleaving length, for blo
k de
oding, while remaining almost 
onstant forearliest de
oding.5 Con
lusionWe introdu
ed a s
heme for pra
ti
al network 
oding in real networks, and simulatedthe s
heme on graphs of several Internet Servi
e Providers. The s
heme uses bu�eringto syn
hronize arbitrary pa
ket arrivals and departures at ea
h node, random en
odingto deal with varying numbers of pa
kets in the bu�er, and a pa
ket format that in
ludesglobal en
oding ve
tors to provide the re
eivers with just the right information to de-
ode the pa
kets under su
h time-varying network 
onditions. The s
heme 
an a
hievethroughput 
lose to 
apa
ity with low delay.A
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